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Abstract

Several deeper results on maximal monotone operators have recently found simpler proofs using
Fitzpatrick functions. In this paper, we study a sequence of Fitzpatrick functions associated
with a monotone operator. The first term of this sequence coincides with the original Fitzpatrick
function, and the other terms turn out to be useful for the identification and characterization of
cyclic monotonicity properties. It is shown that for any maximal cyclically monotone operator,
the pointwise supremum of the sequence of Fitzpatrick functions is closely related to Rockafellar’s
antiderivative. Several examples are explicitly computed for the purpose of illustration. In
contrast to Rockafellar’s result, a maximal 3-cyclically monotone operator need not be maximal
monotone. A simplified proof of Asplund’s observation that the rotation in the Euclidean plane
by π/n is n-cyclically monotone but not (n+1)-cyclically monotone is provided. The Fitzpatrick
family of the subdifferential operator of a sublinear and of an indicator function is studied in
detail. We conclude with a new proof of Moreau’s result concerning the convexity of the set of
proximal mappings.
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1 Introduction

Throughout this paper, we assume that

X is a real Banach space, (1)

with norm ‖ · ‖, with continuous dual space X∗, and with the pairing p = 〈·, ·〉 between X and X∗.
Our aim is to provide new results on monotone operators and their associated Fitzpatrick func-
tions. We denote the graph of a set-valued operator A : X → 2X∗

by graA =
{
(x, x∗) ∈ X × X∗ |

x∗ ∈ Ax
}

and recall the following notions.

Definition 1.1 Let A : X → 2X∗
. Then A is n-cyclically monotone if n ∈ {2, 3, . . .} and

(a1, a
∗
1) ∈ gra A

...
(an, a∗n) ∈ graA

an+1 = a1





⇒
n∑

i=1

〈ai+1 − ai, a
∗
i 〉 ≤ 0. (2)

The operator A is monotone if it is 2-cyclically monotone; equivalently, if

(x, x∗) ∈ gra A
(y, y∗) ∈ gra A

}
⇒ 〈x − y, x∗ − y∗〉 ≥ 0. (3)

The operator A is cyclically monotone if for every n ∈ {2, 3, . . .}, A is n-cyclically monotone.

Definition 1.2 Let A : X → 2X∗
and let n ∈ {2, 3, . . .}. Then A is maximal n-cyclically monotone

if A is monotone and no proper extension of A is n-cyclically monotone; A is maximal cyclically
monotone if A is cyclically monotone and no proper extension of A is cyclically monotone; A is
maximal monotone if A is maximal 2-cyclically monotone.

Zorn’s Lemma guarantees that every n-cyclically monotone operator admits an extension, in the
sense of enlargement of the graph, to a maximal n-cyclically monotone extension. An analogous
result holds for cyclically monotone operators. Monotone operators play a fundamental role in
optimization; the reader is referred to [14, 42, 43, 48] for further information. Linear maximal n-
cyclically monotone operators are discussed in [1]. One of the most remarkable results in monotone
operator theory is due to Rockafellar [38] who proved that the maximally cyclically monotone oper-
ators are precisely the subdifferential operators of functions that are convex, lower semicontinuous,
and proper. Hence every maximally cyclically monotone operator admits an antiderivative, which
is unique up to an additive constant, see Fact 3.2 below. Other fundamental results concern char-
acterizations of maximal monotonicity and the maximality of the sum of two maximal monotone
operators under a constraint qualification. Through the use of the Fitzpatrick function [21], such
results have recently found dramatically simpler proofs; see, e.g., [9] and [45]. Fitzpatrick functions
play also a key role in various works on monotone operators [12, 16, 17, 18, 28, 29, 34, 44]. Let us
now state the definition of a Fitzpatrick function.
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Definition 1.3 Let A : X → 2X∗
. The Fitzpatrick function of A is

FA : X × X∗ → ]−∞,+∞] : (x, x∗) 7→ sup
(a,a∗)∈gra A

(
〈x, a∗〉 + 〈a, x∗〉 − 〈a, a∗〉

)
. (4)

Fitzpatrick [21] established the following fundamental properties.

Fact 1.4 Let A : X → 2X∗
be maximal monotone. Then FA is convex, lower semicontinuous,

proper, p ≤ FA, and p = FA on gra A. Moreover, FA is the smallest function with these properties.

In this paper, we provide several novel results concerning Fitzpatrick functions and monotone
operators. These results can be roughly classified into five categories, which also correspond to the
contents of the remaining five sections.

➀ In Section 2, we introduce an increasing sequence of Fitzpatrick functions of order n, where
n ∈ {2, 3, . . .}. The first term of this sequence coincides with the original Fitzpatrick func-
tions, which is a powerful tool in the study of maximal monotone operators. Analogously, we
show that the Fitzpatrick functions of order n captures precisely (maximal) n-cyclic mono-
tonicity properties. We also provide an example of a maximal 3-cyclically monotone operator
that is not maximal monotone (Example 2.16). This is in striking contrast to Rockafellar’s
characterization of maximal cyclically monotone operators.

➁ The important case of subdifferential operators is considered in greater detail in Section 3.
We show how the Fitzpatrick functions and Rockafellar’s antiderivative arise from a common
ancestor and prove, using deeper results on subgradients, that the sequence of Fitzpatrick
functions converges to a function that has a close relationship to Rockafellar’s antiderivative
(Theorem 3.5).

➂ Section 4 contains several examples of maximal monotone operators where the Fitzpatrick
functions of all orders are computed in closed form. It is possible that outside the graph all
Fitzpatrick functions are either identical (Example 4.2) or pairwise distinct (Example 4.4).
We also provide a simple, more self-contained proof of Asplund’s result [1] that rotations in
the Euclidean plane by π/n are n-cyclically monotone but not (n + 1)-cyclically monotone
(Example 4.6).

➃ The Fitzpatrick family of a given maximal monotone operator A : X → 2X∗
consists of

all convex, lower semicontinuous, and proper functions that are greater than or equal to p
everywhere and equal to p on the graph of A. By Fact 1.4, this family contains FA. In
Section 5, we extend results of Penot [34] and of Burachik and Fitzpatrick [16] by showing
that the Fitzpatrick family is a singleton when A is the subdifferential operator of either a
sublinear function (Theorem 5.3) or of an indicator function (Corollary 5.9).

➄ The last Section 6 deals with convexity properties of the set of proximal mappings (resol-
vents of subdifferential operators). Moreau showed that in Hilbert space the set of proximal
mappings is convex [33]. We provide a different proof of this result (Theorem 6.7) and also
an example illustrating the nonconvexity of the set of firmly nonexpansive mappings outside
Hilbert space (Example 6.4 and Remark 6.5).
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Notation utilized is standard in Convex Analysis and Monotone Operator Theory; see, e.g., [12],
[43], and [48].

2 Fitzpatrick functions and cyclic monotonicity

Let us introduce the following functions which may be interpreted as common ancestors of the
Fitzpatrick function and Rockafellar’s antiderivative.

Definition 2.1 Let A : X → 2X∗
, let (a1, a

∗
1) ∈ graA, and let n ∈ {2, 3, . . .}. If n = 2, we

set CA,2,(a1,a∗
1
) : X × X∗ → ]−∞,+∞] : (x, x∗) 7→ 〈x, a∗1〉 + 〈a1, x

∗〉 − 〈a1, a
∗
1〉. Now suppose that

n ∈ {3, 4, . . .}. Then the value of the function CA,n,(a1,a∗
1
) : X×X∗ → ]−∞,+∞] at (x, x∗) ∈ X×X∗

is defined by

sup
(a2,a∗

2
)∈gra A
...

(an−1,a∗
n−1)∈gra A

( n−2∑

i=1

〈ai+1 − ai, a
∗
i 〉

)
+ 〈x − an−1, a

∗
n−1〉 + 〈a1, x

∗〉; (5)

equivalently, by

sup
(a2,a∗

2
)∈gra A,
...

(an−1,a∗
n−1)∈gra A

〈x, x∗〉 +

( n−2∑

i=1

〈ai+1 − ai, a
∗
i 〉

)
+ 〈x − an−1, a

∗
n−1〉 + 〈a1 − x, x∗〉. (6)

Definition 2.2 (Fitzpatrick functions) Let A : X → 2X∗
. For every n ∈ {2, 3, . . .}, the Fitz-

patrick function of A of order n is

FA,n = sup
(a,a∗)∈gra A

CA,n,(a,a∗). (7)

The Fitzpatrick function of A of infinite order is FA,∞ = supn∈{2,3,...} FA,n.

The first result is immediate from the definition.

Proposition 2.3 Let A : X → 2X∗
and let n ∈ {2, 3, . . .}. Then FA,n : X × X∗ → [−∞,+∞] is

convex and lower semicontinuous. At (x, x∗) ∈ X × X∗, the value of FA,n is given by

sup
(a1,a∗

1)∈gra A,
...

(an−1,a∗
n−1)∈gra A

〈x, x∗〉 +

( n−2∑

i=1

〈ai+1 − ai, a
∗
i 〉

)
+ 〈x − an−1, a

∗
n−1〉 + 〈a1 − x, x∗〉. (8)
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Moreover,
FA,n ≥ 〈·, ·〉 on gra A. (9)

If n = 2, then (8) simplifies to sup(a,a∗)∈gra A〈x, a∗〉 + 〈a, x∗〉 − 〈a, a∗〉, which is the original def-
inition (see Definition 1.3) of the Fitzpatrick function [21] of A at (x, x∗) ∈ X × X∗. Note that
(FA,n)n∈{2,3,...} is a sequence of increasing functions and that FA,n → FA,∞ pointwise. We now
provide a characterization of n-cyclically monotone operators by Fitzpatrick functions of order n
which directly generalizes [28, Proposition 2].

Proposition 2.4 Let A : X → 2X∗
and let n ∈ {2, 3, . . .}. Then the following are equivalent.

(i) A is n-cyclically monotone.

(ii) FA,n ≤ 〈·, ·〉 on gra A.

(iii) FA,n = 〈·, ·〉 on gra A.

Proof. Take (x, x∗) ∈ graA and take n − 1 additional points (a1, a
∗
1), . . . , (an−1, a

∗
n−1) in gra A.

“(i)⇒(ii)”: In view of Definition 1.1,
( ∑n−2

i=1 〈ai+1 − ai, a
∗
i 〉

)
+ 〈x − an−1, a

∗
n−1〉 + 〈a1 − x, x∗〉 ≤ 0

and thus 〈x, x∗〉 +
( ∑n−2

i=1 〈ai+1 − ai, a
∗
i 〉

)
+ 〈x − an−1, a

∗
n−1〉 + 〈a1 − x, x∗〉 ≤ 〈x, x∗〉. Recalling (8)

and taking the supremum over (a1, a
∗
1), . . . , (an−1, a

∗
n−1) in gra A, we see that FA,n(x, x∗) ≤ 〈x, x∗〉.

“(ii)⇒(iii)”: This follows from (9). “(iii)⇒(i)”: By (8), 〈x, x∗〉 +
(∑n−2

i=1 〈ai+1 − ai, a
∗
i 〉

)
+

〈x − an−1, a
∗
n−1〉 + 〈a1 − x, x∗〉 ≤ 〈x, x∗〉. Hence

( ∑n−2
i=1 〈ai+1 − ai, a

∗
i 〉

)
+ 〈x − an−1, a

∗
n−1〉 +

〈a1 − x, x∗〉 ≤ 0, which implies that A is n-cyclically monotone. �

Corollary 2.5 Let A : X → 2X∗
. Then A is cyclically monotone ⇔ FA,∞ ≤ 〈·, ·〉 on graA ⇔

FA,∞ = 〈·, ·〉 on gra A.

Proof. This is clear from Proposition 2.4 and the fact that FA,∞ = supn∈{2,3,...} FA,n. �

Remark 2.6 For any function f : X × X∗ → ]−∞,+∞], set, as in [21, Definition 2.1], Gf : X →
2X∗

: x 7→
{
x∗ ∈ X∗ | (x∗, x) ∈ ∂f(x, x∗)

}
. Fitzpatrick proved that for any A : X → 2X∗

that is
monotone, the operator GFA,2

is a monotone extension of A (and hence A = GFA,2
whenever A is

maximal monotone); see [21, Corollary 3.5]. The following generalization holds. Let A : X → 2X∗

be n-cyclically monotone for some n ∈ {2, 3, . . .}. Then GFA,n
is a monotone extension of A.

Consequently, if A is maximal monotone, then A = GFA,n
. Indeed, it follows from [21, Lemma 3.3]

that GFA,2
is a monotone extension of A. Take (x, x∗) ∈ graA. Then (x∗, x) ∈ ∂FA,2(x, x∗) and

thus, for any (y, y∗) ∈ X × X∗,

FA,2(x + y, x∗ + y∗) − FA,2(x, x∗) ≥ 〈y, x∗〉 + 〈x∗, x〉. (10)

On the other hand, we have FA,n ≥ FA,2 and also, by Proposition 2.4, FA,n(x, x∗) = 〈x, x∗〉 =
FA,2(x, x∗). Altogether, FA,n(x + y, x∗ + y∗) − FA,n(x, x∗) ≥ 〈y, x∗〉 + 〈x∗, x〉, and hence (x∗, x) ∈
∂FA,n(x, x∗), i.e., (x, x∗) ∈ gra GFA,n

.
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The next result deals with the extensibility of n-cyclic monotone operators.

Proposition 2.7 Let A : X → 2X∗
be n-cyclically monotone for some n ∈ {2, 3, . . .}, let (x, x∗) ∈

X × X∗, and define B : X → 2X∗
via graB = gra A ∪ {(x, x∗)}. Then B is n-cyclically monotone

⇔ FA,n(x, x∗) ≤ 〈x, x∗〉.

Proof. “⇒”: Proposition 2.4 (applied to B) shows that FB,n(x, x∗) ≤ 〈x, x∗〉. On the other
hand, since gra A ⊂ gra B, (8) yields FA,n(x, x∗) ≤ FB,n(x, x∗). Altogether, FA,n(x, x∗) ≤
〈x, x∗〉. “⇐”: The result is clear if (x, x∗) ∈ graA so we assume that (x, x∗) 6∈ gra A. Take
(b1, b

∗
1), (b2, b

∗
2), . . . , (bn, b∗n) in gra B and set bn+1 = b1. If these n pairs all belong to gra A,

then
∑n

i=1〈bi+1 − bi, b
∗
i 〉 ≤ 0 since A is n-cyclically monotone. Otherwise, the set of indices

I =
{
i ∈ {1, 2, . . . , n} | (bi, b

∗
i ) = (x, x∗)

}
contains K elements, where K ∈ {1, 2, . . . , n}. Write

I = {i1, . . . , ik}, where 1 ≤ i1 < i2 < . . . < iK ≤ n. After relabeling if necessary, we assume further
that i1 = 1 and we set iK+1 = n + 1. Then

K〈x, x∗〉 +

n∑

i=1

〈bi+1 − bi, b
∗
i 〉 =

K∑

k=1

(
〈x, x∗〉 +

ik+1−1∑

i=ik

〈bi+1 − bi, b
∗
i 〉

)

≤ KFA,n(x, x∗)

≤ K〈x, x∗〉. (11)

We deduce that
∑n

i=1〈bi+1 − bi, b
∗
i 〉 ≤ 0 and this implies the n-cyclic monotonicity of B. �

The following result extends [21, Corollary 3.9].

Corollary 2.8 Let A : X → 2X∗
be maximal n-cyclically monotone, for some n ∈ {2, 3, . . .}. Then

FA,n > 〈·, ·〉 outside gra A, and FA,n = 〈·, ·〉 on gra A.

Proof. Suppose to the contrary that there exists a point (x, x∗) ∈ (X × X∗) r (gra A) such that
FA,n(x, x∗) ≤ 〈x, x∗〉. Proposition 2.7 implies that the operator B : X → 2X∗

, defined via gra B =
gra A∪{(x, x∗)}, is still n-cyclically monotone which contradicts the maximality assumption on A.
Hence FA,n > 〈·, ·〉 outside gra A. Finally, by Proposition 2.4, FA,n = 〈·, ·〉 on gra A. �

We now provide characterizations of maximal n-cyclic monotone operators within the classes of
maximal monotone, n-cyclic monotone, and general set-valued operators.

Theorem 2.9 Let A : X → 2X∗
be maximal monotone and let n ∈ {2, 3, . . . , }. Then the following

are equivalent.

(i) A is n-cyclically monotone.

(ii) A is maximal n-cyclically monotone.

(iii) graA =
{
(x, x∗) ∈ X × X∗ | FA,n(x, x∗) = 〈x, x∗〉

}
.
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Proof. “(i)⇒(ii)”: This is clear since A is maximal monotone. “(ii)⇒(iii)”: A direct consequence
of Corollary 2.8. “(iii)⇐(i)”: Take any (x, x∗) ∈ gra A. Then FA,n(x, x∗) = 〈x∗, x〉 by assumption.
Hence Proposition 2.3 implies that

sup
(a1,a∗

1)∈gra A,
...

(an−1,a∗
n−1

)∈gra A

( n−2∑

i=1

〈ai+1 − ai, a
∗
i 〉

)
+ 〈x − an−1, a

∗
n−1〉 + 〈a1 − x, x∗〉 = 0. (12)

Therefore, for n − 1 arbitrary pairs (a1, a
∗
1), · · · , (an−1, a

∗
n−1) in graA, we have

( n−2∑

i=1

〈ai+1 − ai, a
∗
i 〉

)
+ 〈x − an−1, a

∗
n−1〉 + 〈a1 − x, x∗〉 ≤ 0. (13)

Since this holds for every (x, x∗) ∈ graA, we conclude that A is n-cyclically monotone. �

Remark 2.10 Let A : X → 2X∗
be maximal monotone. For every n ∈ {2, 3, . . .}, set Sn ={

(x, x∗) ∈ X × X∗ | FA,n(x, x∗) = 〈x, x∗〉
}
. It is clear from Corollary 2.8 and (8) that pointwise

〈·, ·〉 ≤ FA,2 ≤ FA,3 ≤ · · · ≤ FA,n → FA,∞ (14)

and hence that
graA = S2 ⊃ S3 ⊃ · · · ⊃ Sn ⊃ Sn+1 ⊃ · · · . (15)

We now have the following dichotomy. Either Sn ≡ graA, in which case A is a subdifferential
operator (see Fact 3.2 below), or there is a minimal n ∈ {2, 3, . . .} such that gra A = Sn % Sn+1.
In the latter case, by Theorem 2.9, A is n-cyclically monotone but not (n+1)-cyclically monotone.

Theorem 2.11 Let A : X → 2X∗
be n-cyclically monotone for some n ∈ {2, 3, · · · }. Then A is

maximal n-cyclically monotone ⇔
{
(x, x∗) ∈ X × X∗ | FA,n(x, x∗) ≤ 〈x, x∗〉

}
⊂ gra A.

Proof. “⇒”: Take (x, x∗) ∈ X × X∗ such that FA,n(x, x∗) ≤ 〈x, x∗〉. By Proposition 2.7, gra A ∪
(x, x∗) is the graph of an n-cyclically monotone operator. Since A is maximal n-cyclically monotone,
we deduce that (x, x∗) ∈ graA. “⇐”: Assume to the contrary that A is not maximal n-cyclically
monotone. Hence there exists Ã : X → 2X∗

such that Ã is a n-cyclically monotone and graA is a
proper subset of gra Ã. Take (x, x∗) ∈ gra ÃrgraA. Then F eA,n

(x, x∗) = 〈x, x∗〉 by Proposition 2.4.

On the other hand, FA,n(x, x∗) ≤ F eA,n
(x, x∗). Altogether, FA,n(x, x∗) ≤ 〈x, x∗〉. This contradicts

the hypothesis since (x, x∗) 6∈ gra A. �

Corollary 2.12 Let A : X → 2X∗
be cyclically monotone. Then A is maximal cyclically monotone

⇔
{
(x, x∗) ∈ X × X∗ | FA,∞(x, x∗) ≤ 〈x, x∗〉

}
⊂ graA.

Proof. “⇐”: Assume A is not maximal cyclically monotone. Then there exists (y, y∗) ∈
(X × X∗) r gra A such that graA ∪ {(y, y∗)} is the graph of some cyclically monotone opera-
tor, say B. By Corollary 2.5, FA,∞(y, y∗) ≤ FB,∞(y, y∗) ≤ 〈y, y∗〉. The hypothesis now implies
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that (y, y∗) belongs to gra A, which is absurd. “⇒”: Assume the inclusion is false, i.e., there exists
(y, y∗) ∈ X × X∗ such that FA,∞(y, y∗) ≤ 〈y, y∗〉 yet (y, y∗) 6∈ gra A. Thus, (∀n ∈ {2, 3, . . .})
FA,n(y, y∗) ≤ FA,∞(y, y∗) ≤ 〈y, y∗〉. Let B : X → 2X∗

be given via gra B = graA ∪ {(y, y∗)}.
Proposition 2.7 implies that (∀n ∈ {2, 3, . . .}) B is n-cyclically monotone. Hence B is cyclically
monotone, which contradicts the maximality of A. �

Theorem 2.13 Let A : X → 2X∗
and let n ∈ {2, 3, . . . , }. Then A is maximal n-cyclically mono-

tone ⇔ gra A =
{
(x, x∗) ∈ X × X∗ | FA,n(x, x∗) ≤ 〈x, x∗〉

}
.

Proof. Combine Theorem 2.11 and Proposition 2.4. �

The next result, which is a refinement of [21, Proposition 4.2], provides an upper bound of FA,2

in terms of the Fenchel conjugate of FA,n.

Theorem 2.14 Let X be reflexive and let A : X → 2X∗
be n-cyclically monotone for some n ∈

{2, 3, . . .}. Then
(
∀(x, x∗) ∈ X × X∗

)
FA,2(x, x∗) ≤ F ∗

A,n(x∗, x).

Proof. Take (x, x∗) ∈ X × X∗. Then

F ∗
A,n(x∗, x) = sup

(y,y∗)∈X×X∗

(
〈(y, y∗), (x∗, x)〉 − FA,n(y, y∗)

)

≥ sup
(y,y∗)∈gra A

(
〈y, x∗〉 + 〈x, y∗〉 − FA,n(y, y∗)

)

= sup
(y,y∗)∈gra A

(
〈y, x∗〉 + 〈x, y∗〉 − 〈y, y∗〉

)
(16)

= FA,2(x, x∗), (17)

where we used Proposition 2.4 in (16). �

Corollary 2.15 Let X be reflexive and let A : X → 2X∗
be maximal n-cyclically monotone for

some n ∈ {2, 3, . . . , }. Then A is maximal monotone ⇔ (∀(x, x∗) ∈ X × X∗) F ∗
A,n(x∗, x) ≥ 〈x, x∗〉.

Proof. “⇒”: Suppose that A is maximal (2-cyclically) monotone. Fix any (x, x∗) ∈ X × X∗.
On the one hand, by Corollary 2.8, FA,2(x, x∗) ≥ 〈x, x∗〉. On the other hand, by Theorem 2.14,
F ∗

A,n(x∗, x) ≥ FA,2(x, x∗). Altogether, FA,n(x∗, x) ≥ 〈x, x∗〉, as claimed. “⇐”: Suppose that
(∀(x, x∗) ∈ X × X∗) F ∗

A,n(x∗, x) ≥ 〈x, x∗〉. Since A is maximal n-cyclically monotone, Corollary 2.8
yields (∀(x, x∗) ∈ X × X∗) FA,n(x, x∗) ≥ 〈x, x∗〉. Therefore, by [18, Theorem 3.1] (see also [45,
Theorem 1.4] and [34, Theorem 6]), the set

{
(x, x∗) ∈ X × X∗ | FA,n(x, x∗) = 〈x, x∗〉

}
is the graph

of a maximal monotone operator. Since FA,n ≥ 〈·, ·〉, this set is equal to
{
(x, x∗) ∈ X × X∗ |

FA,n(x, x∗) ≤ 〈x, x∗〉
}
, which, by Theorem 2.13, is gra A. �

The following example illustrates that maximal n-cyclic monotonicity does not imply maximal
monotonicity.

Example 2.16 There exists a maximal 3-cyclically monotone operator on R2 that is not maximal
monotone.
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Proof. Let X = R2 and define an operator A : X → 2X via graA = {(z1, z
∗
1), . . . , (z4, z

∗
4)} ⊂ R2×R2,

where
(z1, z

∗
1) =

(
(1, 0), (0, 1)

)
, (z2, z

∗
2) =

(
(0, 1), (−1, 0)

)
,

(z3, z
∗
3) =

(
(−1, 0), (−1,−2)

)
, (z4, z

∗
4) =

(
(0,−1), (0,−1)

)
.

(18)

It is elementary to verify that A is 3-cyclically monotone. Zorn’s Lemma guarantees the existence
of an operator B : X → 2X such that gra A ⊂ gra B and such that

B is maximal 3-cyclically monotone. (19)

We shall prove by contradiction that
(0, 0) 6∈ dom B. (20)

Thus assume there exists (ξ, η) ∈ X such that
(
(0, 0), (ξ, η)

)
∈ gra B. Define Ã via gra Ã =

gra A∪
{(

(0, 0), (ξ, η)
)}

. Then gra Ã ⊂ graB. Hence Ã is 3-cyclically monotone, which leads to the
following set of conditions on (ξ, η):

{
ξ ≤ 0, η ≤ 0, ξ ≥ −1, η ≥ −1, η ≤ 1, ξ ≤ −1, ξ ≥ −2, η ≥

−1, ξ ≤ 2, ξ ≥ −3, η ≤ 0, η ≥ −2, ξ ≥ 0}. Since the subset {ξ ≤ −1, ξ ≥ 0} of these conditions is
inconsistent, we have arrived at a contradiction. This verifies (20). We now claim that

B is not maximal monotone. (21)

Once more, we argue by contradiction and thus assume that B is maximal monotone. A result of
Simons [43, Theorem 18.3] implies that

int dom B = int conv domB. (22)

Now gra A ⊂ gra B ⇒ dom A ⊂ dom B ⇒ int conv dom A ⊂ int conv dom B. Hence, using the
definition of A and (22), we deduce that

(0, 0) ∈ int conv{z1, z2, z3, z4} = int conv domA ⊂ int conv dom B = int domB ⊂ dom B. (23)

But (20) and (23) are contradictory, and we therefore have proved that B is not maximal monotone.
In view of (19) and (21), we see that the operator B does the job. �

3 Rockafellar’s antiderivative

Recall the definition of the function CA,n,(a,a∗) in Definition 2.1 for an operator A : X → 2X∗
and the

two corresponding sets of parameters, namely points (a, a∗) ∈ gra A and integers n ∈ {2, 3, . . .}. The
Fitzpatrick function of order n arises by keeping n fixed while supremizing over (a, a∗). Analogously,
we shall see that Rockafellar’s antiderivative is (essentially) obtained by keeping (a, a∗) fixed while
supremizing over n. Therefore, the function CA,n,(a,a∗) can be viewed as the “common ancestor” of
the Fitzpatrick functions and Rockafellar’s antiderivative.

Definition 3.1 (Rockafellar function) Let A : X → 2X∗
and (a, a∗) ∈ gra A. Then we define

the Rockafellar function by

RA,(a,a∗) : X → ]−∞,+∞] : x 7→ sup
n∈{2,3,...}

CA,n,(a,a∗)(x, 0) (24)
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The importance of the Rockafellar function stems from the following fundamental result due to
Rockafellar (see [38] or [48, Proposition 2.4.3, Theorem 3.2.8, and Corollary 3.2.11]). It states
that maximal cyclically monotone operators are precisely the subdifferential operators of convex,
lower semicontinuous and proper functions. Moreover, the Rockafellar functions are antiderivatives,
which are unique up to constants.

Fact 3.2 (Rockafellar) Let f : X → ]−∞,+∞] be convex, lower semicontinuous, and proper.
Then ∂f is maximal monotone and cyclically monotone, hence maximal cyclically monotone. Con-
versely, let A : X → 2X∗

be maximal cyclically monotone and let (a, a∗) ∈ graA. Then RA,(a,a∗) is
convex, lower semicontinuous, and proper, RA,(a,a∗)(a) = 0, and

A = ∂RA,(a,a∗) (25)

is maximal monotone. If ∂f = A, then f(·) = f(a) + RA,(a,a∗)(·).

We shall utilize the following result of Borwein (see [8, Theorem 1] or [48, Theorem 3.1.4(i)]).

Fact 3.3 Let f : X → ]−∞,+∞] be convex, lower semicontinuous, and proper. Then

(∀ε > 0)(∀x ∈ dom f)(∃ yε,x ∈ dom ∂f) ‖x − yε,x‖ < ε and |f(x) − f(yε,x)| < ε. (26)

The proof of the following result is borrowed from [3, Corollary 1.3].

Proposition 3.4 Let f : X → ]−∞,+∞] be convex, lower semicontinuous, and proper. Then

(∀x∗ ∈ X∗) f∗(x∗) = sup
x∈dom ∂f

(
〈x, x∗〉 − f(x)

)
. (27)

Proof. Let h = f + ιdom ∂f . Then Fact 3.3 states that grah is dense in gra f . Hence for every
x∗ ∈ X∗, f∗(x∗) = sup〈gra f , (x∗,−1)〉 = sup〈gra h, (x∗,−1)〉 = supx∈dom ∂f

(
〈x, x∗〉 − f(x)

)
. �

We now compute the Fitzpatrick function of infinite order and its Fenchel conjugate for subdif-
ferentials. Further information on Fitzpatrick functions of order 2 for subdifferentials can be found
in [7].

Theorem 3.5 Let f : X → ]−∞,+∞] be convex, lower semicontinuous, and proper. Then for
every (x, x∗) ∈ X × X∗,

〈x, x∗〉 ≤ F∂f,2(x, x∗) ≤ F∂f,3(x, x∗) ≤ · · · ≤ F∂f,n(x, x∗) → F∂f,∞(x, x∗) = f(x) + f∗(x∗) (28)

and

F ∗
∂f,2(x

∗, x) ≥ F ∗
∂f,3(x

∗, x) ≥ · · · ≥ F ∗
∂f,n(x∗, x) → h(x∗, x) ≥ F ∗

∂f,∞(x∗, x) = f∗(x∗) + f(x), (29)

where h : X∗ × X : ]−∞,+∞] is convex and h(x∗, x) ≥ h∗∗(x∗, x) = f∗(x∗) + f(x).
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Proof. By Definition 2.2 and (8), it is clear that (F∂f,n)n∈{2,3,...} is an increasing sequence converging
pointwise to F∂f,∞. By Fact 3.2, ∂f is maximal monotone so that Corollary 2.8 implies that
〈·, ·〉 ≤ F∂f,2. Take (x, x∗) ∈ X × X∗. Using Definitions 2.1&3.1, Fact 3.2 and Proposition 3.4, we
see that

F∂f,∞(x, x∗) = sup
n∈{2,3,...}

F∂f,n(x, x∗) = sup
n∈{2,3,...}

sup
(a,a∗)∈gra ∂f

C∂f,n,(a,a∗)(x, x∗)

= sup
(a,a∗)∈gra ∂f

sup
n∈{2,3,...}

C∂f,n,(a,a∗)(x, 0) + 〈a, x∗〉

= sup
(a,a∗)∈gra ∂f

〈a, x∗〉 + R∂f,(a,a∗)(x)

= sup
(a,a∗)∈gra ∂f

〈a, x∗〉 +
(
f(x) − f(a)

)
= f(x) + sup

a∈dom ∂f

(
〈a, x∗〉 − f(a)

)

= f(x) + f∗(x∗). (30)

This proves (28). By Fenchel conjugation, we learn that
(
F ∗

∂f,n(x∗, x)
)
n∈{2,3,...}

is a decreasing

sequence converging to h(x∗, x), where h : X∗ × X : ]−∞,+∞] is a convex function such that
h(x∗, x) ≥ h∗∗(x∗, x) ≥ f∗(x∗) + f(x). Conjugating this decreasing sequence yields F∂f,2(x, x∗) ≤
F∂f,3(x, x∗) ≤ · · · ≤ F∂f,n(x, x∗) ≤ · · · ≤ h∗(x, x∗). Hence F∂,∞(x, x∗) = f(x) + f∗(x∗) ≤ h∗(x, x∗).
Conjugating this inequality yields h∗∗(x∗, x) ≤ f∗(x∗) + f(x), which completes the proof. �

4 Examples

Example 4.1 (reciprocation) Let X = R and let

f : R → ]−∞,+∞] : ξ 7→
{
− ln ξ, if ξ > 0;

+∞, otherwise.
(31)

Then (∀ξ ∈ R) ∂f(ξ) = −1/ξ, if ξ > 0; ∂f(ξ) = ∅, otherwise, and (∀η ∈ X) f∗(η) = f(−η) − 1.
Furthermore,

(∀n ∈ {2, 3, . . .})(∀(ξ, η) ∈ R2) F∂f,n(ξ, η) =

{
(n − 1) − n n

√−ηξ, if ξ ≥ 0 and η ≤ 0;

+∞, otherwise
(32)

and F∂f,∞(ξ, η) = limn F∂f,n(ξ, η) = f(ξ) + f∗(η).
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Proof. Take (ξ, η) ∈ R2. Using (8), we see that

F∂f,n(ξ, η) = sup
(α1,β1)∈gra ∂f,

...
(αn−1,βn−1)∈gra ∂f

( n−2∑

i=1

(αi+1 − αi)βi

)
+ (ξ − αn−1)βn−1 + α1η

= sup
α1>0,...,αn−1>0

α1η +

( n−2∑

i=1

(αi+1 − αi)
−1

αi

)
+ (ξ − αn−1)

−1

αn−1

= (n − 1) − inf
α1>0,...,αn−1>0

[
α1(−η) +

α2

α1
+

α3

α2
+ · · · + αn−1

αn−2
+

ξ

αn−1

]
. (33)

If ξ < 0, then F∂f,n(ξ, η) = +∞ (via α1 = α2 = · · · = αn−2 = 1 and αn−1 ↓ 0 in (33)). Similarly, if
η > 0, then F∂f,n(ξ, η) = +∞. We thus assume that ξ ≥ 0 and η ≤ 0. Then the bracketed term in
(33) is clearly nonnegative. If ξ = 0, then F∂f,n(ξ, η) = n−1 since the bracketed term can be made
arbitrarily close to 0 (consider α2 = α2

1, . . . , αn−1 = αn−1
1 and let α1 ↓ 0). An analogous argument

shows that if η = 0, then F∂f,n(ξ, η) = n − 1 as well. Finally, we assume that ξ > 0 and η < 0.
Then the Arithmetic-Mean-Geometric-Mean inequality shows that

α1(−η) +
α2

α1
+

α3

α2
+ · · · + αn−1

αn−2
+

ξ

αn−1
≥ n n

√
α1(−η)

α2

α1

α3

α2
· · · αn−1

αn−2

ξ

αn−1
= n n

√
−ηξ, (34)

and equality in (34) holds exactly when

α1(−η) =
α2

α1
=

α3

α2
· · · =

αn−1

αn−2
=

ξ

αn−1
, (35)

which is a system of equations that can be solved by forward or backward substitution. Therefore,
F∂f,n(ξ, η) = (n − 1) − n n

√
−ηξ. The formula for F∂f,∞ follows from (28). �

We now give an example where all Fitzpatrick functions coincide. This example will be consid-
erably strengthened in Section 5.

Example 4.2 (normal cone operator) Let X be a real Hilbert space and let C be a nonempty
closed convex subset of X. Set NC = ∂ιC . Then

(∀n ∈ {2, 3, . . .})(∀(x, x∗) ∈ X × X) FNC ,n(x, x∗) = FNC ,∞(x, x∗) = ιC(x) + ι∗C(x∗). (36)

Proof. Take n ∈ {2, 3, . . .} and (x, x∗) ∈ X × X. On the one hand, as shown in [7, Example 3.1],
FNC ,2(x, x∗) = ιC(x) + ιC(x∗). On the other hand, (28) implies that FNC ,2(x, x∗) ≤ FNC ,n(x, x∗) ≤
FNC ,∞(x, x∗) = ιC(x) + ι∗C(x∗). Altogether, we conclude that (36) holds. �

Remark 4.3 Let X = R and let

f : X → ]−∞,+∞] : ρ 7→





+∞, if ρ < 0;

0, if ρ = 0;

ρ ln(ρ) − ρ, if ρ > 0.

(37)
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Denote the inverse of the function [0,+∞[ → [0,+∞[ : ρ → ρeρ by W . (The function W is known
as the Lambert W function.) Then by [7, Example 3.6]

F∂f,2 : (ρ, ρ∗) 7→





+∞, if ρ < 0;

exp(ρ∗ − 1), if ρ = 0;

ρρ∗ + ρ
(
W (κ) + 1

W (κ) − 2
)
, if ρ > 0 and κ = ρe1−ρ∗ .

(38)

Unfortunately, we were unable to find a closed form for F∂f,n for n ∈ {3, 4, . . .}.

Example 4.4 (identity) Let X be a real Hilbert space and n ∈ {2, 3, . . .}. Then

FId,n : X×X → R : (x, x∗) 7→ 1
2‖x‖

2+ 1
2‖x

∗‖2− 1
2n
‖x−x∗‖2 = n−2

2n

(
‖x‖2+‖x∗‖2

)
+ 1

2n
‖x+x∗‖2 (39)

and FId,∞ : X × X → R : (x, x∗) 7→ 1
2‖x‖2 + 1

2‖x∗‖2.

Proof. Take (x, x∗) ∈ X × X. Using (8), we see that

FId,n(x, x∗) = sup
x1,...,xn−1

[ n−2∑

i=1

〈xi+1 − xi, xi〉 + 〈x − xn−1, xn−1〉 + 〈x∗, x1〉
]
. (40)

The bracketed term can be rewritten as

− 〈x1, x1〉 + 〈x2, x1〉 − 〈x2, x2〉 + 〈x2, x3〉 − 〈x3, x3〉 + · · ·
− 〈xn−2, xn−2〉 + 〈xn−2, xn−1〉 − 〈xn−1, xn−1〉 + 〈x, xn−1〉 + 〈x∗, x1〉

= −1
2‖x1‖2 − 1

2‖x1 − x2‖2 − 1
2‖x2 − x3‖2 − · · · − 1

2‖xn−2 − xn−1‖2 − 1
2‖xn−1‖2

+ 〈x, xn−1〉 + 〈x∗, x1〉
= 1

2‖x‖
2 + 1

2‖x
∗‖2 − 1

2‖x
∗ − x1‖2 − 1

2‖x1 − x2‖2 − · · · − 1
2‖xn−2 − xn−1‖2 − 1

2‖xn−1 − x‖2, (41)

which is clearly a concave and differentiable function in x = (x1, . . . , xn−1), call it Ψ. Then
∇Ψ(x) = 0 is equivalent to the linear system

−2x1 + x2 + x∗ = 0 (42)

x1 − 2x2 + x3 = 0 (43)

x2 − 2x3 + x4 = 0 (44)

... (45)

xn−3 − 2xn−2 + xn−1 = 0 (46)

xn−2 − 2xn−1 + x = 0. (47)

This system has either no or a unique solution since Ψ(x) is strictly concave in x1 and xn−1 and
since the other variables can be obtained by forward or backward substitution. In fact, the latter
case is true: setting

(∀k ∈ {1, 2, . . . , n − 1}) xk = x∗ + k
n
(x − x∗), (48)

one verifies that (42)–(47) holds and, by (41), that FId,n(x, x∗) = 1
2‖x‖2 + 1

2‖x∗‖2 − 1
2n
‖x − x∗‖2.

Finally, Id = ∇1
2‖ · ‖2 and

(
1
2‖ · ‖2

)∗
= 1

2‖ · ‖2, so the formula for FId,∞ follows from (28) (or by
letting n tend to +∞ in (39)). �
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Example 4.5 (skew operator) Let X be a Hilbert space and let A : X → X be a skew-
symmetric, i.e., A is continuous, linear, and A∗ = −A. Furthermore, suppose that A 6= 0 and
that n ∈ {3, 4, . . .}. Then FA,2 = ιgra A and FA,n ≡ +∞. Consequently, A is maximal monotone,
but it is not n-cyclically monotone.

Proof. We shall use repeatedly that (∀y ∈ X) 〈y,Ay〉 = 0. Let (x, x∗) ∈ X × X. Using (8), we see
that

FA,2(x, x∗) = sup
y∈X

(
〈x,Ay〉 + 〈y, x∗〉 − 〈x,Ax〉

)
= sup

y∈X

〈A∗x + x∗, y〉

= sup
y∈X

〈x∗ − Ax, y〉 = ι{0}(x
∗ − Ax) = ιgra A(x, x∗). (49)

Since A 6= 0, we deduce that A∗ 6= 0 and hence there exists z̃ ∈ X such that A∗z̃ + x∗ 6= 0. Then

FA,3(x, x∗) = sup
y,z

(
〈z − y,Ay〉 + 〈x − z,Az〉 + 〈y, x∗〉

)
= sup

y,z

(
〈z,Ay〉 + 〈x,Az〉 + 〈y, x∗〉

)

≥ sup
y
〈A∗z̃ + x∗, y〉 + 〈x,Az̃〉 = +∞. (50)

Using (14), we see that FA,n ≡ +∞. The “Consequently” part follows from Theorem 2.9 and
Theorem 2.13. �

In [1], Asplund provides examples of matrices that are n-cyclically monotone but not (n + 1)-
cyclically monotone. However, his statement is not very explicit. For completeness, we give a
simpler proof of his observation that the matrix corresponding to the rotation by π/n in the
Euclidean plane is n-cyclically monotone yet not (n + 1)-cyclically monotone.

Example 4.6 (rotations) Let X = R2 and let n ∈ {2, 3, . . .}. Denote the matrix corresponding
to counter-clockwise rotation by π/n by Rn, i.e.,

Rn =

(
cos(π/n) − sin(π/n)
sin(π/n) cos(π/n)

)
. (51)

Then Rn is maximal monotone and n-cyclically monotone, but Rn is not (n+1)-cyclically monotone.

Proof. It is clear that Rn is monotone, and that R∗
n = R−1

n . Since dom Rn = X, the maximal
monotonicity of Rn is thus a consequence of [43, page 30]. Since R2 is skew-symmetric, Example 4.5
implies that R2 is not 3-cyclically monotone. We have verified the conclusion for n = 2 and thus
assume for the remainder of the proof that n ∈ {3, 4, . . .}. Let us show first that Rn is not (n + 1)-
cyclically monotone. Take x ∈ X r {0}. Since Rn + R∗

n is invertible (in fact, a strictly positive
multiple of the identity), there exists a ∈ X such that 1

2Rna + 1
2R∗

na = R∗
nx. Note that a 6= 0

(since x 6= 0) and that Rna 6= R∗
na (since π/n < π). The fact that Rn is an isometry and the

parallelogram law thus yield 4‖a‖2 = 2‖Rna‖2 + 2‖R∗
na‖2 = ‖Rna + R∗

na‖2 + ‖Rna − R∗
na‖2 >

‖Rna + R∗
na‖2 = ‖2R∗

nx‖2 = 4‖x‖2. Hence

‖a‖ > ‖x‖. (52)
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Furthermore, Rna+R∗
na = 2R∗

nx implies that 2〈a,Rna〉 = 〈a,Rna + R∗
na〉 = 2〈a,R∗

nx〉 = 2〈Rna, x〉.
Using (52), we note that

−〈a,Rna〉 + 2〈x,Rna〉 = 〈a,Rna〉 = ‖a‖2 cos(π/n) > ‖x‖2 cos(π/n) = 〈x,Rnx〉. (53)

We now take n points from gra Rn by setting

(∀i ∈ {1, 2, . . . , n}) (ai, a
∗
i ) = (R2i

n a,R2i+1
n a). (54)

Then, since Rn is an isometry, we have for every i ∈ {1, 2, . . . , n − 1},

〈ai+1 − ai, a
∗
i 〉 = 〈R2i+2

n a − R2i
n a,R2i+1

n a〉 = 〈R2i+2
n a,R2i+1

n a〉 − 〈R2i
n a,R2i+1

n a〉
= 〈Rna, a〉 − 〈a,Rna〉 = 0. (55)

Using (8), (54), (55), the fact that R2n
n = Id and that Rn is an isometry, and (53), we deduce that

FRn,n+1(x,Rnx) ≥
( n−1∑

i=1

〈ai+1 − ai, a
∗
i 〉

)
− 〈an, a∗n〉 + 〈x, a∗n〉 + 〈a1, Rnx〉

= −〈R2n
n a,R2n+1

n a〉 + 〈x,R2n+1
n a〉 + 〈R2

na,Rnx〉
= −〈a,Rna〉 + 〈x,Rna〉 + 〈Rna, x〉
> 〈x,Rnx〉. (56)

Thus FRn,n+1 > p on gra Rnr{(0, 0)}, and therefore, by Proposition 2.4, Rn is not (n+1)-cyclically
monotone.

It remains to show that Rn is n-cyclically monotone. Take x1 = (ξ1, η1), . . . , xn = (ξn, ηn) in X,
and set xn+1 = x1. We must show that

0 ≥
n∑

i=1

〈xi+1 − xi, Rnxi〉. (57)

We now identify R2 with C in the usual way: x = (ξ, η) in R2 corresponds to ξ +iη in C, where i =√
−1 and 〈x, y〉 = Re (xy) for x and y in C. The operator Rn corresponds to complex multiplication

by
ω = exp(iπ/n). (58)

Thus our aim is to show that 0 ≥ Re
(∑n

i=1(xi+1 − xi)ωxi

)
=

∑n
i=1 Re

(
(xi+1 − xi)ωxi

)
, an in-

equality which we now reformulate in Cn. Denote the n × n-identity matrix by I and set

B =




0 1 0 · · · 0

0 0 1 0
...

...
. . .

. . .

0
0 1
1 0 · · · 0




∈ Cn×n and R = ωI ∈ Cn×n. (59)
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Identifying x ∈ Cn with (x1, . . . , xn) ∈ Xn, we note that (57) means 0 ≥ Re
((

(B − I)x
)∗

Rx
)
;

equivalently, 0 ≥ x∗(B∗−I)Rx+x∗R∗(B−I)x. In other words, we need to show that the Hermitian
matrix

C = (I − B∗)R + R∗(I − B) =




(ω + ω) −ω 0 · · · 0 −ω

−ω (ω + ω)
. . . 0

0
. . .

. . .
. . .

...
... 0
0 (ω + ω) −ω
−ω 0 · · · 0 −ω (ω + ω)




(60)

is positive semidefinite. The matrix C is a circulant (Toeplitz) matrix and thus belongs to a class
of well-studied matrices that have close connections to Fourier Analysis. E.g., by [20, Chapter 3]
or by [31, Exercise 5.8.12], the set of (n not necessarily distinct) eigenvalues of C is

Λ =
{
q(1), q(ω2), . . . , q(ω2(n−1))

}
, where q : t 7→ (ω + ω) − ωt − ωtn−1. (61)

Since ω2n = 1, we verify that Λ =
{
2 cos(π/n) − 2 cos((2k + 1)π/n) | k ∈ {0, 1, . . . , n − 1}

}
is a set

of nonnegative real numbers, as required. �

Remark 4.7 Let X and Rn be as in Example 4.6. We claim that

(∀n ∈ {2, 3, 4}) FRn,n+1 ≡ +∞. (62)

Indeed, take n ∈ {2, 3, 4}, (x, x∗) ∈ X × X∗ and a ∈ X, and set

(∀i ∈ {1, 2, . . . , n}) (ai, a
∗
i ) = (Ri−1

n a,Ri
na). (63)

Then (8), the fact that Rn is an isometry, and the Cauchy-Schwarz inequality imply that

FRn,n+1(x, x∗) ≥
( n−1∑

i=1

〈Ri
na − Ri−1

n a,Ri
na〉

)
− 〈Rn−1

n a,Rn
na〉 + 〈x,Rn

na〉 + 〈a, x∗〉

=

( n−1∑

i=1

〈Rna − a,Rna〉
)
− 〈a,Rna〉 + 〈x,Rn

na〉 + 〈a, x∗〉

≥ (n − 1)‖a‖2 − n〈a,Rna〉 − ‖x‖‖a‖ − ‖a‖‖x∗‖
= ‖a‖2

(
n − 1 − n cos(π/n)

)
− ‖a‖

(
‖x‖ + ‖x∗‖

)
. (64)

Since n ∈ {2, 3, 4}, we know that n − 1 − n cos(π/n) > 0 and hence that (64) tends to +∞ as
‖a‖ → +∞. Therefore, (62) is verified. However, our knowledge of FRn,n+1 for n ∈ {5, 6, . . .} is
rather limited.
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5 The Fitzpatrick family for subdifferential operators

of sublinear and of indicator functions

The following family of functions was first studied in [21] and then in [17].

Definition 5.1 (Fitzpatrick family) Let A : X → 2X∗
be maximal monotone. The Fitzpatrick

family FA associated with A consists of all functions F : X × X∗ → ]−∞,+∞] such that

F is convex, lower semicontinuous, p ≤ F , and p = F on gra A. (65)

Let A : X → 2X∗
be maximal monotone. As mentioned in Fact 1.4, Fitzpatrick proved in [21]

that FA,2 ∈ FA and that it is the smallest member of FA:

(
∀(x, x∗) ∈ X × X∗

)
FA,2(x, x∗) = min

{
F (x, x∗) | F ∈ FA

}
= (ιgra A + p)∗(x∗, x). (66)

Fitzpatrick also proved that for every (x, x∗) ∈ X × X∗, FA,2(x, x∗) ≤ F ∗
A,2(x

∗, x) ≤ ιgra A +p. This
implies that (ιgra A + p)∗∗|X×X∗ belongs to FA and is, in fact, the largest member of FA:

(
∀(x, x∗) ∈ X × X∗

)
(ιgra A + p)∗∗(x, x∗) = max

{
F (x, x∗) | F ∈ FA

}
. (67)

For any two functions f : X → ]−∞,+∞] and g : Y → ]−∞,+∞], where Y is a real Banach
space, we denote the function X × Y → ]−∞,+∞] : (x, y) 7→ f(x) + g(y) by f ⊕ g. Note that if
f : X → ]−∞,+∞] is convex, lower semicontinuous, and proper, then ∂f is maximal monotone
and f ⊕ f∗ ∈ F∂f . In [17], Burachik and Svaiter established the following new characterization of
the subdifferential operator: If FA contains a separable member f ⊕ g, then necessarily A = ∂f
and g = f∗. In this section, we shall present two examples (see Theorem 5.3 and Corollary 5.9)
where the Fitzpatrick family F∂f reduces to the singleton {f ⊕ f∗}. We shall require the following
useful properties of sublinear functions (see, e.g., [3, page 26] or [48, Theorem 2.4.14]). Recall that
f : X → ]−∞,+∞] is sublinear if f is convex, f(0) = 0, and (∀x ∈ X)(∀λ > 0) f(λx) = λf(x).

Fact 5.2 Let f : X → ]−∞,+∞] be sublinear, lower semicontinuous, and proper. Then

(i) f∗ = ι∂f(0), and

(ii) (∀z ∈ X)(∀λ > 0) ∂f(λz) = ∂f(z) =
{
z∗ ∈ ∂f(0) | 〈z, z∗〉 = f(z)

}
.

(iii) f = ι∗
∂f(0)|X = sup〈·, ∂f(0)〉.

Theorem 5.3 Let f : X → ]−∞,+∞] be sublinear, lower semicontinuous, and proper. Then
F∂f = {f ⊕ f∗}.

Proof. We claim that
ι∂f(0) ⊕ f∗∗ = f∗ ⊕ f∗∗ = (ιgra ∂f + p)∗. (68)
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The left equality in (68) is clear from Fact 5.2(i). Fix (x∗, x∗∗) ∈ X∗ × X∗∗ and assume first that
x∗ /∈ ∂f(0). Then

(f∗ ⊕ f∗∗)(x∗, x∗∗) = ι∂f(0)(x
∗) + f∗∗(x∗∗) = +∞ (69)

and there exists w ∈ X such that f(w) < 〈w, x∗〉. Now Fact 3.3 guarantees the existence of a point
z ∈ dom ∂f such that

f(z) < 〈z, x∗〉. (70)

Using (70) and Fact 5.2(i), we estimate

+∞ ≥ (ιgra ∂f + p)∗(x∗, x∗∗) = sup
(y,y∗)∈gra ∂f

(
〈y, x∗〉 + 〈y∗, x∗∗〉 − 〈y, y∗〉

)
(71)

≥ sup
λ>0

z∗∈∂f(λz)

(
〈λz, x∗〉 + 〈z∗, x∗∗〉 − 〈λz, z∗〉

)
≥ sup

λ>0

z∗∈∂f(0)

〈z,z∗〉=f(z)

(
λ
(
〈z, x∗〉 − 〈z, z∗〉

)
+ 〈z∗, x∗∗〉

)

= sup
λ>0

z∗∈∂f(0)

〈z,z∗〉=f(z)

(
λ
(
〈z, x∗〉 − f(z)

)
+ 〈z∗, x∗∗〉

)
= sup

λ>0
λ
(
〈z, x∗〉 − f(z)

)
+ sup

z∗∈∂f(0)

〈z,z∗〉=f(z)

〈z∗, x∗∗〉

= +∞. (72)

Altogether, (69) and (71)–(72) imply that (68) holds when x∗ 6∈ ∂f(0). We now assume that
x∗ ∈ ∂f(0). Using Fact 5.2(i), we then obtain

(f∗ ⊕ f∗∗)(x∗, x∗∗) = ι∂f(0)(x
∗) + f∗∗(x∗∗) = f∗∗(x∗∗) = ι∗∂f(0)(x

∗∗)

= sup
y∗∈X∗

(
〈y∗, x∗∗〉 − ι∂f(0)(y

∗)
)

= sup
y∗∈∂f(0)

(
〈0, x∗〉 + 〈y∗, x∗∗〉 − 〈0, y∗〉

)

≤ sup
(y,y∗)∈gra ∂f

(
〈y, x∗〉 + 〈y∗, x∗∗〉 − 〈y, y∗〉

)

= (ιgra ∂f + p)∗(x∗, x∗∗). (73)

On the other hand, [38] or [43, Lemma 34.6 and Theorem 34.8] guarantee the existence of a net

(xα) in X such that xα
∗
⇀ x∗∗ (i.e., weak* convergence) and f(xα) → f∗∗(x∗∗). Using (66)

and Theorem 3.5, the fact that any conjugate function is weak* lower semicontinuous and that
(x∗, xα)

∗
⇀ (x∗, x∗∗), we deduce

(ιgra ∂f + p)∗(x∗, x∗∗) ≤ lim(ιgra ∂f + p)∗(x∗, xα) = lim F∂f,2(xα, x∗) ≤ lim f(xα) + f∗(x∗)

= f∗∗(x∗∗) + f∗(x∗) = (f∗ ⊕ f∗∗)(x∗, x∗∗). (74)

Combining (73) and (74), we conclude that (ιgra ∂f + p)∗(x∗, x∗∗) = (f∗ ⊕ f∗∗)(x∗, x∗∗) in this case
as well. Therefore, we have verified (68) and hence

f∗ ⊕ f∗∗ = (ιgra ∂f + p)∗. (75)

Now (75), the fact that f∗∗|X = f (see [43, Remark 34.4]), and (66) imply that (∀(x, x∗) ∈ X × X∗)
(f ⊕ f∗)(x, x∗) = f∗(x∗) + f(x) = (f∗ ⊕ f∗∗)(x∗, x) = (ιgra ∂f + p)∗(x∗, x) = F∂f,2(x, x∗), i.e., that

F∂f,2 = f ⊕ f∗. (76)
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Conjugating (75) we obtain f∗∗ ⊕ f∗∗∗ = (ιgra ∂f + p)∗∗; restricting this to X × X∗ we arrive at

f ⊕ f∗ = (ιgra ∂f + p)∗∗|X×X∗ . (77)

In view of (66)&(67), we deduce from (76)&(77) that f ⊕ f∗ is both the smallest and the largest
member of F∂f , i.e., that f ⊕ f∗ is the only member of F∂f . �

The proof of Theorem 5.3 relies critically on Fact 3.3. This deeper result can be avoided if f is
everywhere subdifferentiable. However, as the following example shows, a proper sublinear lower
semicontinuous function may fail to be subdifferentiable on its domain.

Example 5.4 Suppose that X = R2 and let C =
{
(ξ, η) ∈ X∗ | 0 < 1/ξ ≤ η

}
. Then C is closed,

convex, and nonempty, and the corresponding proper, lower semicontinuous, and sublinear support
function f = ι∗C is given by

f : X → ]−∞,+∞] : (ξ, η) 7→
{
−2

√
ξη, if ξ ≤ 0 and η ≤ 0;

+∞, otherwise.
(78)

Moreover, the function f is not subdifferentiable at any point which belongs to the boundary of its
domain, except for the origin.

Proof. Let x be a point which belongs to the boundary of the domain of f which is not the
origin. Then x = (0, η) where η < 0 or x = (ξ, 0) where ξ < 0. In any case, the supremum of
x as a functional on C is not attained. If we show that C = ∂f(0), it will then follow from the
combination of Fact 5.2(ii)&(iii) that ∂f(x) = ∅. Indeed, from the definitions of ∂f(0) and f it
follows that C ⊂ ∂f(0). If y∗ ∈ X∗ r C, then there is a functional y ∈ X strictly separating C
from y∗, that is, 〈y, y∗〉 > supx∗∈C〈y, x∗〉 = f(y), which means that y∗ 6∈ ∂f(0), so ∂f(0) ⊂ C.
Another point of view (due to S. Simons) is the following. For a fixed ξ < 0, the function f(ξ, ·)
has a vertical tangent at 0. It follows that f is not subdifferentiable at (ξ, 0). �

Remark 5.5 Several comments on Theorem 5.3 and Example 5.4 are in order.

(i) Theorem 5.3 was first observed by Penot [34] when X is reflexive. It was also established by
Burachik and Fitzpatrick [16] when X is not necessarily reflexive, but f is everywhere finite;
in fact, in the proof of Theorem 5.3 we generalize some of their calculations. (The statement
of Theorem 5.3 appears in [16], but in a forthcoming corrigendum it is restated to hold when
dom f = X.)

(ii) Example 5.4 provides a proper, lower semicontinuous, and sublinear function that is not
everywhere subdifferentiable on its domain, which is a cone in the Euclidean plane. We now
provide two approaches to the construction of a function of this kind in higher-dimensional
spaces.

(a) Assume first that X is a real Hilbert space of dimension 3 or higher, and write X =
R2 ⊕ Y . Let C and f be as in Example 5.4, and set D = C ⊕ {0}. Then ι∗D : R2 × Y →
]−∞,+∞] :

(
(ξ, η), y

)
7→ f(ξ, η)+ιY (y) = f(ξ, η) and hence dom ∂ι∗D = (dom ∂f)⊕Y $

(dom f) ⊕ Y = dom ι∗D.
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(b) Now assume that Y is a real Banach space, that g : Y → ]−∞,+∞] is convex, lower
semicontinuous, and proper, and that y0 ∈ (dom g) r (dom ∂g). Set X = Y × R and
x0 = (y0, 1), and define the corresponding perspective function (see, e.g., [10, Exercise 24
on page 84], [13, Section 3.2.6], and [40, pages 35 and 67] for further information on this
construction) by

h : X → ]−∞,+∞] : x = (y, ρ) 7→
{

ρg(y/ρ), if ρ > 0;

+∞, otherwise.
(79)

Since epih is the convex cone generated by (epi g) × {1}, it is clear that f = h∗∗|X
is sublinear, lower semicontinuous, and proper. The lower semicontinuity of g implies
the lower semicontinuity of h on (dom g) × {1}; in particular, (∀y ∈ dom g) f(y, 1) =
h(y, 1) = g(y). We claim that

x0 ∈ (dom f) r (dom ∂f). (80)

It is clear that x0 ∈ dom f since f(x0) = h(x0) = g(y0) ∈ R. Assume to the contrary
that ∂f(x0) 6= ∅, say x∗ = (y∗, ρ∗) ∈ ∂f(x0). Then (∀y ∈ dom g) 〈y − y0, y

∗〉 =
〈(y, 1) − (y0, 1), (y

∗, ρ∗)〉 ≤ f(y, 1) − f(y0, 1) = h(y, 1) − h(y0, 1) = g(y) − g(y0), which
implies the absurdity y∗ ∈ ∂g(y0). This verifies (80).

(iii) Let us provide some guidance on how to find Y , g, and y0 with the properties required in
(ii)(b). Assume that Y is a real Banach space and that S is a nonempty, bounded, closed,
and convex subset of Y . Fix d ∈ Y r {0}. Following [25, Section 20.D] and [11, Example 5],
we define

g : Y → ]−∞,+∞] : y 7→ min
{
ρ ∈ R | y + ρd ∈ S

}
. (81)

Then g is convex, lower semicontinuous, proper, and (∀y ∈ Y )(∀ρ ∈ R) g(y + ρd) = g(y) − ρ.
Hence g is unbounded below — which implies that 0 is never a subgradient — and (∀y ∈ Y )
∂g(y) = ∂g

(
y + g(y)d

)
. Moreover,

(∀y ∈ dom g) y + g(y)d ∈ S and

∂g
(
y + g(y)d

)
⊂

{
nonzero support functionals for S at y + g(y)d

}
. (82)

Assume in addition that Y is separable, that intS = ∅ (equivalently, that the core of S is
empty [25, Lemma 17.E]), and that S is not contained in any closed hyperplane of Y . By
[25, Exercise 2.18], there exists a point y0 ∈ S that is not a support point of S. Now take
d ∈ Y r

(
cone(y0 − S)

)
and let g be as in (81). Then g(y0) = 0. In view of (82), this implies

that ∂g(y0) = ∅, as required.

(iv) Here is a concrete scenario of (iii). Let N = {1, 2, . . .} and Y = `2(N). Set

S =
{
(ηn)n∈N ∈ `2(N) | (∀n ∈ N) |ηn| ≤ 1/4n

}
, y0 = (0)n∈N, and d = (−1/2n)n∈N, (83)

and verify directly that the properties required in (iii) are satisfied. Fix y = (ηn)n∈N ∈ Y and
ρ ∈ R. Then y +ρd ∈ S ⇔ (∀n ∈ N) |ηn −ρ/2n| ≤ 1/4n ⇔ (∀n ∈ N) ρ ∈ [2nηn −1/2n, 2nηn +
1/2n]. Thus, letting g as in (81), we see that

g : Y → ]−∞,+∞] : y = (ηn)n∈N 7→ sup
n∈N

(
2nηn − 1/2n

)
, (84)
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and that ∂g(y0) = ∅ by (iii). Hence, the corresponding perspective function (see (79)) is

h : Y × R → ]−∞,+∞] :
(
(ηn)n∈N, ρ

)
7→

{
supn∈N

(
2nηn − ρ/2n

)
, if ρ > 0;

+∞, otherwise.
(85)

In this particular setting, a little more care shows that f = h∗∗ is given explicitly by

f : Y × R → ]−∞,+∞] :
(
(ηn)n∈N, ρ

)
7→

{
supn∈N

(
2nηn − ρ/2n

)
, if ρ ≥ 0;

+∞, otherwise.
(86)

(v) Let us point out that (up to a minus sign) the function f of Example 5.4 is the perspective
function of y 7→ −2

√
y.

(vi) Let C be a weak* closed and convex subset of X∗, and let x0 be a point in X such that the
supremum of x0 as a functional on C is finite but not attained. Set f = ι∗C |X = sup〈·, C〉.
Then C = ∂f(0) (see [48, Theorem 2.4.14(vi)] or the proof of Theorem 5.10 below). According
to Fact 5.2(ii)&(iii), the subdifferential of the proper, lower semicontinuous, and sublinear
function f is empty at x0 ∈ dom f . We note that it is precisely such a set (necessarily
unbounded) which is presented in Example 5.4 and in Remark 5.5(ii)(a).

We aim to complement Theorem 5.3 with a result for indicator functions. The following fact
goes back to Rockafellar [38, Proposition 1].

Fact 5.6 Let f : X → ]−∞,+∞] be convex, lower semicontinuous, and proper, and let (x∗, x∗∗) ∈
X∗×X∗∗. Then (x∗, x∗∗) ∈ gra ∂f∗ if and only if there exists a bounded net (xα, x∗

α) ∈ gra ∂f such

that xα
∗
⇀ x∗∗ and x∗

α → x∗.

Theorem 5.7 Let f : X → ]−∞,+∞] be convex, lower semicontinuous, and proper. Then
F(∂f)−1 ,2 = F∂f∗,2. Moreover, if F ∈ F∂f , then F ∗ ∈ F∂f∗ .

Proof. Since gra(∂f)−1 ⊂ gra ∂f∗, it is clear that F(∂f)−1,2 ≤ F∂f∗,2. Take (x∗, x∗∗) ∈ X∗×X∗∗ and

(y∗, y∗∗) ∈ gra ∂f∗. By Fact 5.6, there exists a bounded net (yα, y∗α) ∈ gra ∂f such that yα
∗
⇀ y∗∗

and y∗α → y∗. It follows that

F(∂f)−1,2(x
∗, x∗∗) ≥ 〈y∗α, x∗∗〉 + 〈x∗, yα〉 − 〈yα, y∗α〉 → 〈y∗, x∗∗〉 + 〈x∗, y∗∗〉 − 〈y∗, y∗∗〉. (87)

Supremizing over (y∗, y∗∗) ∈ gra ∂f∗ we get F(∂f)−1 ,2(x
∗, x∗∗) ≥ F∂f∗,2(x

∗, x∗∗). Altogether,
F(∂f)−1 ,2 = F∂f∗,2. Take F ∈ F∂f . Then

F ∗(x∗, x∗∗) = sup
(y,y∗)∈X×X∗

(
〈y, x∗〉 + 〈y∗, x∗∗〉 − F (y, y∗)

)

≥ sup
(y,y∗)∈gra ∂f

(
〈y, x∗〉 + 〈y∗, x∗∗〉 − 〈y, y∗〉

)

= F(∂f)−1 ,2(x
∗, x∗∗)

= F∂f∗,2(x
∗, x∗∗)

≥ 〈x∗, x∗∗〉. (88)
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Since F ≥ F∂f,2, we deduce F ∗ ≤ F ∗
∂f,2 and hence

F ∗|X∗×X ≤ F ∗
∂f,2|X∗×X . (89)

Assume that (z, z∗) ∈ gra ∂f . Then F ∗
∂f,2(z

∗, z) = sup(x,x∗)∈X×X∗

(
〈x, z∗〉+〈z, x∗〉−F∂f,2(x, x∗)

)
≤

〈z, z∗〉. In view of (88), we get

(∀(z, z∗) ∈ gra ∂f) F ∗
∂f,2(z

∗, z) = 〈z∗, z〉. (90)

As before, take (y∗, y∗∗) ∈ gra ∂f∗ and obtain a bounded net (yα, y∗α) ∈ gra ∂f such that yα
∗
⇀ y∗∗

and y∗α → y∗. Using the weak* lower semicontinuity of F ∗, (89), and (90), we deduce that

F ∗(y∗, y∗∗) ≤ lim F ∗(y∗α, yα) ≤ lim F ∗
∂f,2(y

∗
α, yα) = lim〈y∗α, yα〉 = 〈y∗, y∗∗〉. (91)

Altogether, (88) and (91) imply that F ∗ ∈ F∂f∗ . �

Let A : X → 2X∗
be maximal monotone and define Â : X∗ → 2X∗∗

via

gra Â =
{
(y∗, y∗∗) ∈ X∗ × X∗∗ | inf

(x,x∗)∈gra A
〈y∗ − x∗, y∗∗ − x〉 ≥ 0

}
. (92)

Assume that A is such that for every (y∗, y∗∗) ∈ gra Â, there exists a bounded net (yα, y∗α) ∈ gra A

such that yα
∗
⇀ y∗∗ and y∗α → y∗. This condition was originally proposed by Gossez [23] and it

is now known in the literature as dense type or type (D). Subdifferential operators are of type (D)
[23] as are certain linear operators [4]; see [43] for further information. A second inspection of the
proof of Theorem 5.7 reveals that the following, more general result is true.

Theorem 5.8 Let A : X → 2X∗
be maximal monotone of type (D). Then FA−1,2 = F bA,2

. Moreover,
if F ∈ FA, then F ∗ ∈ F bA

.

The next result complements Theorem 5.3 and significantly sharpens Example 4.2.

Corollary 5.9 Let C ⊂ X be nonempty, convex, and closed. Then F∂ιC = {ιC ⊕ ι∗C}.

Proof. It is well known that ι∗C is sublinear, lower semicontinuous, and proper. Take F ∈ F∂ιC .
Theorem 5.7 and Theorem 5.3 yield F ∗ ∈ F∂ι∗C

= {ι∗C ⊕ ι∗∗C }. Hence F ∗ = ι∗C ⊕ ι∗∗C , which implies
that F ∗∗ = ι∗∗C ⊕ ι∗∗∗C and further that F = ιC ⊕ ι∗C . �

We conclude this section with a new proof of a density theorem originally due to Phelps [35].
See also [8].

Theorem 5.10 Let C ⊂ X∗ be nonempty, weak* closed, and convex. Then the set of all elements
of X which attain their supremum on C is dense in the cone of elements of X which are bounded
on C.
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Proof. (See also [3, Theorem 1.4].) Let f = ι∗C |X = sup〈·, C〉. We argue as in Example 5.4.
From Fact 5.2(ii)&(iii), we know that dom ∂f consists of all the points in X (viewed as functionals
belonging to X∗∗) that attain their supremum on the nonempty set ∂f(0). We claim that

C = ∂f(0). (93)

Indeed, the definition of f and the fact that f(0) = 0 imply that C ⊂ ∂f(0). Suppose that
x∗ ∈ X∗ r C. Then there exists an element x ∈ X which strictly separates x∗ and C, i.e.,
〈x∗, x〉 > sup〈C, x〉 = f(x) − f(0), which implies that x∗ /∈ ∂f(0). This verifies (93). The result
now follows since Fact 3.3 implies that dom ∂f is a dense subset of dom f . �

6 Resolvents of subdifferentials

From now on, J denotes the normalized duality mapping of the underlying Banach space, i.e.,

J = ∂
(

1
2‖ · ‖

2
)
. (94)

The following result is due to Rockafellar [39, Corollary on page 78]; recently, Simons and Zălinescu
[44] and Borwein [9] gave new, simpler and more analytic proofs of it based on the Fitzpatrick
function.

Fact 6.1 Suppose that X is reflexive and let A : X → 2X∗
be monotone. Then the following

statements are true.

(i) If A is maximal monotone, then J + A is surjective.

(ii) If both J and J−1 are single-valued (i.e., both X and X∗ are “smooth”) and J+A is surjective,
then A is maximal monotone.

As pointed out by Fitzpatrick and by Bauschke, the assumption that both J and J−1 be single-
valued in Fact 6.1(ii) is critical; see [43, page 39]. When X is a real Hilbert space, then J = Id
and Fact 6.1 reduces to Minty’s theorem [32] which states that a monotone operator A is maximal
monotone if and only if Id +A is surjective, i.e., if and only if the (always single-valued) resolvent
(Id +A)−1 has full domain.

The motivation for our discussion in this section is given in more detail in [6]. That paper is
concerned with the convergence of iterations of certain mappings on a real Hilbert space. One
relevant class of mappings is the class of projections and another is that of resolvents of subdif-
ferentials. Algorithms using iterations of projections onto two (and more) closed convex subsets
of a Hilbert space were proposed in order to find a point in the intersection of these sets. This
was first done by von Neumann [46, 47] when he proved that the sequence (PAPB)n of products
of projection operators converges pointwise to PA∩B when A and B are closed subspaces. See [27]
for a recent elementary geometric proof of von Neumann’s result. Other iterations were considered
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as well. One of these algorithms uses the iterations of the midpoint average map of two nearest
point projections, that is, 1

2PA + 1
2PB . The weak convergence of this iteration was established by

Auslender [2]. Two decades ago Reich [37] raised the question if it is possible for this iteration
to fail to converge in norm. Using an ingenious construction by Hundal [26] (see also [30]), the
authors of [6] gave an affirmative answer to this question.

In 1976 Rockafellar [41] proposed and analyzed an algorithm based on iterations of resolvents
of a subdifferential for minimizing the underlying function. Brézis and Lions [15] established weak
convergence of these iterations under fairly general conditions, and they asked the question whether
these iterations may fail to converge in norm. A counterexample was provided by Güler [24] (see
also [5] for a recent variant). If one shows that the set of resolvents of subdifferentials is convex,
then one can use the counterexample based on the iterations of averaged projections to obtain
a counterexample for norm convergence of Rockafellar’s algorithm [6, Corollary 7.1]. Indeed, the
first person to prove this convexity result was Moreau [33]. Another proof of this fact using
Fenchel conjugate calculus is presented in [6, Theorem 6.1]. In this section we prove that the set
of resolvents of subdifferentials is convex using cyclic monotonicity. Recall [22, page 41] that an
operator T : C → X, where C ⊂ X, is firmly nonexpansive if

(∀x ∈ C)(∀y ∈ C)(∀ρ ≥ 0) ‖Tx − Ty‖ ≤ ‖ρ(x − y) + (1 − ρ)(Tx − Ty)‖. (95)

The following two results are well known (see, e.g., [22]).

Fact 6.2 Suppose that X is a real Hilbert space, let C ⊂ X and let T : C → X. Then the following
are equivalent.

(i) T is firmly nonexpansive.

(ii) (∀x ∈ C)(∀y ∈ C) ‖Tx − Ty‖2 ≤ 〈x − y, Tx − Ty〉.

(iii) T = 1
2 Id+1

2N , where N is nonexpansive (i.e., 1-Lipschitz continuous).

(iv) T = (Id+A)−1 is the resolvent of some monotone operator A : X → 2X .

Corollary 6.3 Suppose that X is a real Hilbert space and let A : X → 2X . Then A is maximal
monotone if and only if its resolvent (Id +A)−1 is firmly nonexpansive with full domain.

Proof. Combine Minty’s theorem (see the paragraph following Fact 6.1) and Fact 6.2. �

Our aim here is to prove the convexity of the set of resolvents of subdifferentials (also known as
proximal mappings). This set is a convex subset of the set of firmly nonexpansive mappings, which
is also easily seen to be convex by utilizing Fact 6.2(iii). As the following example illustrates, the
set of firmly nonexpansive mappings need not be convex outside Hilbert spaces.

Example 6.4 Suppose that X = R3, where ‖x‖ = maxi∈{1,2,3} |ξi| = ‖x‖∞ for x = (ξ1, ξ2, ξ3) ∈
X. Let C = {x, y}, where x = (1, 0, 1) and y = (0, 0, 0), and define T0 : C → X and
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T1 : C → X via their graphs as graT0 =
{(

(1, 0, 1), (0, 1, 1)
)
,
(
(0, 0, 0), (0, 0, 0)

)}
and gra T1 ={(

(1, 0, 1), (1, 1, 0)
)
,
(
(0, 0, 0), (0, 0, 0)

)}
. Then T0 and T1 are both firmly nonexpansive. Further-

more, for every λ ∈ ]0, 1[, the operator

Tλ = (1 − λ)T0 + λT1 (96)

is not firmly nonexpansive.

Proof. For every ρ ≥ 0, we have ‖T0x − T0y‖ = 1 ≤ max{1, ρ} = ‖(ρ, 0, ρ) + (0, 1 − ρ, 1 − ρ)‖ =
‖ρ(x − y) + (1− ρ)(T0x − T0y)‖ and similarly ‖T1x − T1y‖ ≤ ‖ρ(x − y) + (1− ρ)(T1x− T1y)‖, and
this implies that T0 and T1 are firmly nonexpansive. Take λ ∈ ]0, 1[. Then

Tλx = (1 − λ)T0x + λT1x = (λ, 1, 1 − λ) and Tλy = (1 − λ)T0y + λT1y = (0, 0, 0). (97)

Hence

‖Tλx − Tλy‖ = 1

> 1
2‖(1 + λ, 1, 2 − λ)‖

= ‖1
2(1, 0, 1) + (1 − 1

2)(λ, 1, 1 − λ)‖
= ‖1

2(x − y) + (1 − 1
2)(Tλx − Tλy)‖, (98)

which implies that Tλ is not firmly nonexpansive. �

Remark 6.5 Let A : X → 2X . Then A is accretive if (∀λ > 0) (Id +λA)−1 is single-valued and
nonexpansive on dom(Id +λA)−1 = ran(Id +λA), and A is maximal accretive if A is accretive and
no proper extension of A is accretive. Zorn’s Lemma guarantees that every accretive operator
admits a maximal accretive extension. Now let X be as in Example 6.4. Then a result of Crandall
and Liggett [19, Theorem 2.5] implies that A : X → 2X is maximal accretive if and only if it
is accretive and (∀λ > 0) ran(Id +λA) = X. Reich’s [36, Lemma 7.1] shows that Crandall and
Liggett’s result is equivalent to the following: Suppose that D ⊂ X and that T : D → X is firmly
nonexpansive. Then T admits a firmly nonexpansive extension T̃ : X → X. So let T0 and T1 be as
in Example 6.4 and denote their firmly nonexpansive extensions to X by T̃0 and T̃1, respectively.
Then Example 6.4 implies that for every λ ∈ ]0, 1[, the mapping (1 − λ)T̃0 + λT̃1 is not firmly
nonexpansive. In particular, the firmly nonexpansive mappings with full domain do not form a
convex set.

Before proving the main result of this section, we need to translate the cyclic monotonicity
characterization of a subdifferential to a characterization of its resolvent.

Theorem 6.6 Suppose that X is a real Hilbert space and let T : X → X. Then T is the resol-
vent of the maximal cyclically monotone operator A : X → 2X ⇔ T has full domain, T is firmly
nonexpansive, and for every set of points {x1, . . . , xn}, where n ∈ {2, 3, . . .} and xn+1 = x1, one
has

n∑

i=1

〈xi − Txi, Txi − Txi+1〉 ≥ 0. (99)
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Proof. “⇐”: In view of Corollary 6.3, it suffices to show that A = T−1 − Id is cyclically monotone.
Fix n ∈ {2, 3, . . .}, take n points (y1, y

∗
1), . . . , (yn, y∗n) in graA, and set y1 = yn+1. For every

i ∈ {1, . . . , n}, set xi = yi + y∗i ; hence xi ∈ (Id +A)yi, yi = Txi, Txn+1 = yn+1 = y1 = Tx1, and
xi − Txi = xi − yi = y∗i . Plugging all this in (99), we get

n∑

i=1

〈yi − yi+1, y
∗
i 〉 ≥ 0. (100)

Thus A is cyclically monotone. “⇒”: In view of Fact 3.2 and Corollary 6.3, we only need to verify
(99). Take n ∈ {2, 3, . . .} and x1, . . . , xn in X, and set xn+1 = x1. For every i ∈ {1, . . . , n + 1},
set yi = Txi and y∗i = xi − Txi; thus Txi = (Id +A)−1xi ⇒ xi ∈ (Id +A)Txi ⇒ Txi ∈ dom A and
y∗i = xi − Txi ∈ ATxi = Ayi. Therefore,

n∑

i=1

〈xi − Txi, Txi − Txi+1〉 =

n∑

i=1

〈yi − yi+1, y
∗
i 〉 ≥ 0, (101)

and this completes the proof. �

Theorem 6.7 Suppose that X is a real Hilbert space and let f and g be two functions from X to
]−∞,+∞] that are convex, lower semicontinuous, and proper. Further, let α ∈ ]0, 1[. Then there
exists a proper, lower semicontinuous, and convex function h : X → ]−∞,+∞] such that

(Id +∂h)−1 = α(Id +∂f)−1 + (1 − α)(Id +∂g)−1. (102)

Proof. Set S = (Id+∂f)−1 and T = (Id +∂g)−1. Then S and T are firmly nonexpansive with full
domain as they are the resolvents of the maximal monotone operators ∂f and ∂g, respectively. For
convenience, set β = 1 − α. Then αS + βT is firmly nonexpansive with full domain. In view of
Fact 3.2 and Theorem 6.6, given n ∈ {2, 3, . . .} and {x1, . . . , xn} ⊂ X with xn+1 = x1, it suffices to
prove that

0 ≤
n∑

i=1

〈xi − (αSxi + βTxi), (αSxi + βTxi) − (αSxi+1 + βTxi+1)〉 . (103)

Now Theorem 6.6 implies that

0 ≤ α

n∑

i=1

〈xi − Sxi, Sxi − Sxi+1〉 (104)

and that

0 ≤ β
n∑

i=1

〈xi − Txi, Txi − Txi+1〉. (105)

Furthermore, either by direct computation or by simply noticing that Id = ∇
(

1
2‖ · ‖2

)
is cyclically

monotone, we see that given any n points y1, . . . , yn satisfy 0 ≤ ∑n
i=1〈yi, yi − yi+1〉, where yn+1 =

y1. In particular,

0 ≤ αβ

n∑

i=1

〈Txi − Sxi, (Txi − Sxi) − (Txi+1 − Sxi+1)〉. (106)
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Now for every i ∈ {1, . . . , n},

〈xi − (αSxi + βTxi), (αSxi + βTxi) − (αSxi+1 + βTxi+1)〉
= α 〈xi − Sxi, Sxi − Sxi+1〉 + β 〈xi − Txi, Txi − Txi+1〉

+ αβ 〈Txi − Sxi, (Txi − Txi+1) − (Sxi − Sxi+1)〉 . (107)

Therefore, adding (104), (105), and (106) we arrive precisely at (103). �

It is also possible to give — up to an additive constant — a formula for the function h of Theo-
rem 6.7. To do this, we can use the formula given in Rockafellar’s characterization of subdifferentials
as maximal cyclically monotone mappings (Fact 3.2).
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[27] E. Kopecká and S. Reich, “A note on the von Neumann alternating projections algorithm,” Journal of Nonlinear
and Convex Analysis, vol. 5, pp. 379–386, 2004.

[28] J.-E. Mart́ınez-Legaz and B. F. Svaiter, “Monotone operators representable by l.s.c. convex functions,” Set-
Valued Analysis, vol. 13, pp. 21–46, 2005.
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